NON-PROFIT JOINT STOCK COMPANY RUDNENSKY INDUSTRIAL INSTITUTE

	«APPROVEI by the decision Institute protocol №	on of the meet		emic Council of the
	Chairman of	the Academic	c Council	A. Naizabekov
	MODULAR	EDUCATIO	NAL PROGRA	ΔM
	7M	07303 «Const	ruction»	
	(code and	name of the educ	ational program)	
Educational program le Period of education – 2 Scientific and pedagogic	years	gree		
Developers:				
Head of the educational Miryuk O				
Members of the workin	g team on the dev	velopment of t	the educational	program
Oleynik A.				
Representative of emplo	oyers			
Yakupov F.				

1. Passport of the educational program

The graduate of the scientific and pedagogical master's degree in the field of training "7M073 - Architecture and Construction" is awarded the academic degree "Master of Technical Sciences".

The educational program of the scientific and pedagogical magistracy contains:

- 1) theoretical education, including the studying of cycles of basic and core disciplines;
- 2) practical training in the form of pedagogical and research practice;
- 3) research work of a master's student, including internship and completion of a master's thesis;
- 4) final certification.

The educational program "Construction" is implemented along two learning paths: 1 – "Modern technologies in the design of construction objects"; 2 – "Technology of construction of objects of increased reliability".

The purpose of the educational program is to train competent highly qualified specialists in relevant areas of construction, who possess research methods, teaching and learning skills, modern computer design and progressive organization of energy-efficient construction technologies using durable materials, with professional and personal competencies sufficient for successful activity at enterprises of domestic and international labor markets.

Requirements for the *key competencies* of graduates of the scientific and pedagogical Master's degree: the graduate of the educational program must:

- have an idea: about the latest achievements and discoveries in the field of construction and the prospects for their use; about the directions of higher school pedagogy, research activities; about modeling systems in the design and technology of construction production;
- know: state, Russian and foreign languages that provide communication in professional activities; methods of solving problems in the design and construction of buildings and structures, international and domestic standards; the main factors influencing the structure of the economy in the architectural and construction sector; rules and conditions for construction and installation work, fundamentals of pedagogy and psychology, methods of conducting scientific research, achievements of science and technology, quality management standards, advanced achievements of science and technology;
- − *be able to*: formulate and solve problems in the process of practical, research and teaching activities, choose research methods and develop new ones; use BIM technologies in construction design, the latest achievements in the field of building materials science; calculate structures for stability; creatively approach problem solving and make effective decisions;
- have the skills: to plan and organize practical, pedagogical, research and management activities; to use information and computer technologies and scientific methods in conducting research;
- *to be competent*: in matters of scientific methodology, the use of modern software products, processing of the results and forms of their presentation.

The scope of professional activity of the Master of Technical Sciences is related to the design and construction of buildings and structures; engineering surveys for construction; conducting scientific research and educational activities.

Types of activities of Masters of Technical Sciences:

- settlement and design and technical and economic;
- organizational and managerial;
- production, technological and operational;
- expert and consulting;
- research;
- educational (pedagogical).

The objects of professional activity of the Master of Technical Sciences are: organizations of higher and secondary vocational education; research and design institutions; companies, firms and organizations (enterprises) of the construction complex; organizations (enterprises) of other economic infrastructures.

The graduate of the educational program must have general cultural competencies:

- the ability to abstract thinking, analysis, synthesis;
- willingness to act in non-standard situations, to bear social and ethical responsibility for the decisions taken;
 - readiness for self-development, self-realization, use of creative potential.

As a result of mastering the educational program, the graduate must have *general professional competencies*:

- readiness to communicate in the state, Russian and foreign languages to solve the tasks of professional activity;
- willingness to lead a team in the field of professional activity, tolerantly perceiving social, ethnic, confessional and cultural differences; the ability to use in practice skills and abilities in the organization of scientific and production work, team management, to assess the quality of performance results;
- the ability and willingness to navigate in the formulation of the task, apply knowledge about modern research methods, analyze, synthesize and critically summarize information;
- the ability to demonstrate knowledge of fundamental and applied disciplines of the master's degree program;
- the ability to independently acquire new knowledge and skills with the help of information technology and use them in practice; expand and deepen their scientific worldview;
- the ability to use skills and abilities in practice in the organization of research and scientific-production work, in team management, to influence the formation of team goals, to influence the socio-psychological climate to achieve goals, to assess the quality of activities;
 - the ability to demonstrate skills in a scientific team, the ability to generate new ideas;
- the ability to understand the main problems of their subject area, in solving which there is a need for complex selection tasks requiring the use of quantitative and qualitative methods;
- the ability and willingness to conduct scientific experiments using modern research equipment and instruments, to evaluate the results of research;
 - the ability to design, present and report the results of the work performed.
- As a result of mastering the educational program, the graduate must have *professional* competencies:
- knowledge and skills of using methods of design and construction of buildings and structures,
 calculation of structural elements using specialized software products;
- willingness to assess the quality and durability of building materials, possess the skills to study the properties of materials for effective construction;
- the ability to develop draft, technical and operational projects of complex objects, including using computer-aided design systems.
- the ability to develop methods, plans and programs for research and development, prepare tasks for performers, organize experiments and tests, analyze and summarize the results;
- ability to collect, analyze and systematize information on the research topic, prepare scientific and technical reports, reviews of publications on the research topic;
- the ability to develop physical and mathematical (computer) models of phenomena and objects related to the profile of activity;
- possession of methods for protecting intellectual property objects, managing the results of research activities and commercialization of intellectual property rights;
- the ability, based on knowledge of pedagogical techniques, to take direct part in the educational activities of structural units of an educational organization in the profile areas of training.

2. The content of the educational program

	2. The content of the educational program Module Components												
Mod ule	Expected learning outcomes	ECTS credits	semester	Discipli ne code	Name of the components of the module (disciplines, practices and other)	The cycle of discipline	IC или CC	ECTS Credits	Form of control	Emerging competencies			
1	2	3	4	5	6	7	8	9	1 0	11			
Baz. Basic	philosophy of science. Understanding the importance of science in the culture of modern civilization. Knowledge about the origin of science and the main stages of its historical evolution. Improvement of communicative and intercultural competence to the level of the international standard in various fields of	2 2	1 1 1 1	IFN 1101 IYa (P) 1102 PVSh 1103 PU 1104 ZhEBS O 1105 / EBSS 1105	History and philosophy of science Foreign language (professional) Higher school pedagogy Management Psychology Life support and environmental safety of construction facilities / Environmental safety of building systems	BD BD BD BD	IC IC C C	5 3 5	E E E E	general cultural, general professional			
	professional and scientific activity. Knowledge of the main categories and essence of pedagogical science, problems of the global education crisis, current trends in the development of the world educational space. Understanding the basics of the professional and pedagogical culture of a high school teacher, mastering the theoretical foundations of modern pedagogical science and forming readiness for creative solutions to professional tasks. Understanding the technology of effective interpersonal communication as the basis modernization of public consciousness, knowledge of techniques and techniques of effective communication. Knowledge of the functioning of ecosystems, types of anthropogenic impact on construction objects, the basics of theory and practical skills in the field of life support systems of buildings, structures and populated areas.												

1	2	3	4	5	6	7	8	9	1 0	11
MIR. Researc h and calculati on methods	Knowledge of techniques and methods of mathematical modeling; skills in developing mathematical models of deformation of building	8	1	RSKIK K 1106 / MMM S 1106	Calculations of building structures using computer systems / Methods of mathematical modeling in construction	BD	CC	5	Е	general cultural, general professional
	structures; ability to apply mathematical modeling to solve scientific and technical, fundamental and applied problems.		1	MNIS SM 1201	Methodology of scientific research in the field of construction and building materials science	PD	IC	3	Е	
	Knowledge about the methodology and methods of conducting research in construction. Conducting theoretical research using information technology; planning and staging an experiment using instruments and equipment.									

1	2	3	4	5	6	7	8	9	1 0	11
SMP. Modern design	Skills of BIM-design of construction production at the stage of full project	2 0	2	BIMT SP 1202	BIM technologies in construction design	P D	I C	5	Е	general professional, professional
methods	support from the development of technical documentation to the construction of a building within the framework of		2	PFUO 1203 / FON NS 1203	Design of foundations on compacted bases / Foundations on bases with low load- bearing capacity	P D	C C	5	Е	
	the Industry 4.0 concept. Knowledge of design methods and methods of foundation construction taking into account soil mechanics.		3	BIMP EO 2202 / ASOP N 2202	BIM-design of energy- efficient facilities / Architecture of high-reliability construction facilities	P D	C C	5	Е	
	Knowledge and skills of using architectural and construction computer design systems based on BIM modeling to create		3	PM 2108 / EST 2108	Project Management / Economic s of Construction Technologies	B D	C C	5	Е	
	objects with a given reliability. Knowledge of information and communication technologies in business management. Skills of feasibility study and analysis of the effectiveness of design solutions, knowledge of methods of automated calculation of costs for production and sale of products.									

1	2	3	4	5	6	7	8	9	1	11
									U	

SST. Modern construc tion	Knowledge of technology and properties of composite building materials. Skills of reasonable assignment of composite	14	2		Technology and application of composite materials for efficient construction	P D	I C	5	Е	professiona 1
technol ogies	materials in the technology of construction industries. Mastering the basic provisions of the theory and practice of the construction of monolithic and prefabricated monolithic buildings, possession of modern methods of technological design		2	VSO URU 1205 / STM D 1205	Construction of construction projects taking into account regional conditions / Modern technologies of monolithic housing construction	P D	CC	5	Е	
	of works during the construction of objects taking into account geotechnical characteristics. Mastering the methods of modern computer-aided design of organizational and technological preparation and control of construction processes.		2	ASPI KK 1206 / ATS P 1206	Automation of construction processes using computer control / Automated technologies of construction production	P D	C C	4	Е	

1	2	3	4	5	6	7	8	9	1	11
NIRM. Research work of a master's student	Relevance, scientific novelty and practical significance of the work. The use of modern methods of scientific research, theoretical, methodological and technological achievements, advanced international experience. The content of research (methodological, practical) sections.	2 4	3 4	NIR M 130 1	Research work of a master's student, including internship and completion of a master's thesis	RWo MS		3 1 8		general cultural, general professional, professional

1	2	3	4	5	6	7	8	9	10	11
Pra.	Consolidation of	2	2	PP	Pedagogical practice	BD	IC	3	D	general
Practicum	theoretical	0		1107					C	cultural,
	knowledge gained		3	IP 220	Research practice	PD	IC	17	D	general
	in the learning			8					C	professional,
	process,									professional
	formation of									
	practical skills of									
	teaching and									
	learning methods.									
	Knowledge of the									
	latest theoretical,									
	methodological and									
	technological									
	achievements of									
	domestic and									
	foreign science,									
	modern methods of									
	scientific research,									
	processing and									
	interpretation of									
	experimental data.									
OZMD.	Knowledge of key	1	2	IA	Final certification	FC		12		general
Preparation	competencies.	2		(OZM	(preparation and	(PaDo				cultural,
and defense of				D)	defense of a master's	MT)				general
a master's				2401	thesis)					professional,
thesis										professional

1	2	3	4	5	6	7	8	9	1 0	11
IS.	Knowledge and	5	2	GSS	Geoinformation	ATT	С	3	E	general
Innovatio	ability to use the			1501/	systems in		Č		_	professional,
ns in	technical and software		3	AS 1501	construction / Additi	ATT	С	2	Е	professional
constructi	capabilities of modern				ve construction		C			
on	geoinformation									
	systems. Knowledge									
	of models, structure									
	and sources of spatial									
	data. Thematic									
	visualization, spatial									
	analysis in									
	geoinformation									
	systems.									
	Skills of modeling									
	various options in									
	accordance with									
	building regulations.									
	Calculation of									
	economic,									
	environmental,									
	natural risks and									
	threats using systems.									
	Knowledge and									
	ability to use the									
	capabilities of									
	additive technologies.									
	Knowledge of automation methods									
	and resource-saving									
	methods when using									
	the 3D printing									
	method for the									
	construction of									
	objects.									
	Skills of									
	substantiating the									
	choice of materials for									
	additive construction									
	technologies,									
	technological									
	complexes for 3D									
	construction.									

${\bf 3.\ Summary\ table\ on\ the\ scope\ of\ the\ educational\ program}$

Course	Semest	Number of modules	sub	ber of jects died		Number of ECTS credits							Quantity and form of control		
of study	er	to be mastere d	IC	CC	theoretical training	research work of a master's student	pedagogical practice / research practice	additional types of training	final certific ation	total	in hours	exam	differen tiated credit		
1	1	2	5	2	30	-	-	_	_	30	900	7	_		
1	2	5	3	4	24	3	3/-	3	_	33	990	6	1		
2	3	+4	1	2	10	3	-/17	2	_	32	960	3	1		
2	4	1 +1	_	_	_	18	_	_	12	30	900	_	_		
Total	•	8	9	8	64	24	3/17	5	12	12 5	3750	16	2		

4. Learning outcomes of the educational program

Graduates of the educational program have the following abilities:

- 1) demonstrate developing knowledge and understanding in the field of construction, based on advanced knowledge of building materials science, methods of calculation of structures, construction production technology for the original development or application of ideas, in the design of objects, in scientific research, pedagogical work;
- 2) apply their knowledge, understanding and abilities at a professional level to solve scientific problems in construction and building materials science in a broad interdisciplinary context;
- 3) collect and interpret information in the field of scientific and technical problems and prospects for the development of construction, integrate knowledge, make judgments taking into account ethical and social responsibility for the application of these judgments and knowledge
- 4) clearly and unambiguously communicate information, ideas, conclusions, problems and solutions in the field of development, development and implementation of energy-efficient construction technologies and durable building materials to both specialists and non-specialists;
- 5) training skills necessary for independent continuation of further training in the field of modern construction and building materials science.